
Lecture 6

Approximation Techniques

1 The Residual

Consider an equation of the following generic form:

A f(
−→
x ) = g(

−→
x ) , (1)

where A is a linear operator, f(
−→
x ) is the solution, and g(x) is the driving or source function.

Let us assume an approximate trial-space expansion for f(
−→
x ) as follows:

f(
−→
x ) ≈ f̃(

−→
x ) =

N∑
i=1

fiBi(
−→
x ) . (2)

We further assume that the trial-space functions are chosen so that f(
−→
x ) naturally meets

any required boundary conditions. Next we define the residual function as follows:

R(
−→
x ) = g(

−→
x ) − A f̃(

−→
x ) . (3)

We would like to choose the expansion coefficients {fi}N
i=1 so as to make R(

−→
x ) identically

zero because then f̃(
−→
x ) would exactly solve Eq. (1). However, this is obviously almost

never possible. The error in the solution is proportional to the size of the residual. To show

this, we apply A−1 to Eq. (3), and slightly manipulate the resulting equation to obtain

f(
−→
x ) − f̃(

−→
x ) = A−1R(

−→
x ) , (4)
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where f(
−→
x ) = A−1g(

−→
x ). Thus if we can’t make the residual identically zero, we should

try to make it “small” in some sense.

2 Three Basic Methods

There are several different ways to make the residual “small”:

• The Least-Squares Method: choose the expansion coefficients so that the integral of

the square of the residual is minimized, i.e. minimize

Γ =
∑
−→
x

R2(
−→
x ) d

−→
x . (5)

• The Galerkin Method: choose the expansion coefficients so that the residual is

orthogonal over the problem domain to a set of N linearly-independent functions

{
Wi(

−→
x )

}N

i=1
, i.e., ∫

−→
x

R(
−→
x )Wi(

−→
x ) d

−→
x = 0 , i = 1, N. (6)

The weighting functions form an N-dimensional space of functions called the weighting

space. The trial space can be identical to the weighting space, i.e.,

Bi(
−→
x ) = Wi(

−→
x ) , (7)

or it can be a different space.
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• The Collocation Method: choose the expansion coefficients so that the residual is

zero at N distinct points
{−→

x i

}N

i=1
:

R(
−→
x i) = 0 , i = 1, N. (8)

It is clear as to why the residual is made “small” using the least-squares method and the

collocation method, but it is less clear for the weighted residual method. The explanation

is as follows. If the residual is orthogonal to the weighting functions, the least-squares fit

to the residual using the weighting functions is identically zero. Thus the residual must be

“near zero”. For instance, we represent the least-squares fit as

R̃(
−→
x ) =

N∑
i=1

RiWi(
−→
x ) . (9)

The expansion coefficients are chosen to minimize the following functional:

Γ =

∫
X

[R(
−→
x ) −

N∑
i=1

RiWi(
−→
x )]2 d

−→
x . (10)

This minimization is achieved by requiring that ∂Γ
∂Ri

= 0, i = 1, N. This results in the

following matrix equation for the vector of expansion coefficients:

W (
−→
R ) =

−→
ξ , (11a)

where the elements of W are defined by

wi,j =

∫
X

Wi(
−→
x )Wj(

−→
x ) d

−→
x , (11b)
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and

−→
R = (R1, R2, · · ·RN) , (11c)

−→
ξ = (ξ1, ξ2, · · · ξN) , (11d)

ξi =

∫
X

R(
−→
x )Wi(

−→
x ) d

−→
x . (11e)

Thus the vector of expansion coefficients is given by

−→
R = W−1

−→
ξ . (11f)

If the residual is orthogonal to the weighting function, the
−→
ξ vector is identically zero,

and it follows from Eq. (11f) that the expansion coefficients must also be zero.

3 Examples

Consider the following equation:

∂f

∂x
+ σf = 0 , (12)

which is defined over the interval, [0, x0], with the boundary condition, f(0) = 1. The

solution to this equation is

f(x) = exp(−σx) . (13)

The Taylor-series expansion about x = 0 is

f(x) = 1 − τ +
1

2
τ 2 − 1

6
τ 3 +

1

24
τ 4 + O(τ 5) , (14)
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where τ = σx.

3.1 A Least-Squares Example

We next approximately solve Eq. (12) using the least-squares method in conjunction with

a linear trial space that satisfies the boundary condition:

f̃(x) = 1 + ax , (15)

where a is a constant to be determined. Substituting from Eq. (15) into Eq. (13), and

forming the least-squares functional, we get:

Γ =

∫ x0

0

(a + σ(1 + ax))2 dx . (16)

To minimize Γ, we set ∂Γ
∂a

= 0:

∫ x0

0

2 [a + σ(1 + ax)] (1 + σx) dx = 0 . (17)

Manipulating Eq. (17), we get

∫ x0

0

a + σ + (2aσ + σ2)x + aσ2x2 dx = 0 , (18)

(a + σ)x0 + (2aσ + σ2)
x2

0

2
+ aσ2x3

0

3
= 0 , (19)

a = − σ(6 + 3σx0)

6 + 6σx0 + 2σ2x2
0

. (20)
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Thus the approximate solution is

f̃(x) = 1 − σx(6 + 3σx0)

6 + 6σx0 + 2σ2x2
0

. (21)

Evaluating the solution at x = x0 gives

f̃(x0) = 1 − σx0(6 + 3σx0)

6 + 6σx0 + 2σ2x2
0

. (22)

Expanding this solution about x0 = 0 gives

f̃(x0) = 1 − τ0 +
1

2
τ 2
0 − 1

6
τ 3
0 + O(τ 5

0 ) , (23)

where τ0 = σx0. Comparing Eq. (23) with Eq. (14), we find that the f̃(x0) is accurate

through third order. This is quite good for a linear continuous approximation. On the other

hand, for any cell thickness greater than approximately 2.45 mean-free-paths, the solution

at x0 is negative and therefore non-physical. Furthermore, in the limit as x0 → ∞, we

find that f̃(x0) → −1
2
, which is asymptotically incorrect and non-physical. If we integrate

Eq. (12) over the interval, [0, x0], we obtain the analog of the balance equation:

f(x0) − f(0) +

∫ x0

0

σf dx = 0 . (24)

If we substitute f̃ into Eq. (24), we find that it is not satisfied:

f̃(x0) − f(0) +

∫ x0

0

σf̃ dx = − τ 3
0

12 + 12τ0 + 4τ 2
0

. (25)
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This is in keeping with the fact that least-squares methods are generally not conservative.

However, also note that Eq. (25) is nonetheless met through second order in τ0, which

reflects the fact that it is a convergent method.

3.2 A Weighted Residual Example

We next approximately solve Eq. (12) using the weighted-residual method in conjunction

with the linear trial space defined by Eq. (15). We will use the a weight function of unity to

ensure a conservative solution. Following Eq. (6), we substitute from Eq. (15) into Eq. (12),

and integrate the resulting equation over the interval, [0, x0], to obtain the equation for a:

∫ x0

0

[a + σ(1 + ax)] dx = 0 . (26)

Manipulating Eq. (26), we get

a(x0 +
1

2
σx2

0) + σx0 = 0 ,

a = − 2σ

2 + σx0

. (27)

Substituting from Eq. (27) into Eq. (15), we obtain the approximate solution:

f̃(x) = 1 − σx

1 + 1
2
σx0

. (28)

Evaluating Eq. (28) at x = x0, we get

f̃(x0) = 1 − σx0

1 + 1
2
σx0

. (29)
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Expanding Eq. (29) about x0 = 0, we obtain

f̃(x0) = 1 − τ0 +
1

2
τ 2
0 − 1

4
τ 3
0 + O(τ 4

0 ) , (30)

where τ0 = σx0. Comparing Eq. (29) with Eq. (14), we find that f̃(x0) is correct through

second order. This is good for a linear approximation. However, for any cell thickness

greater than approximately 2 mean-free-paths, the solution at x0 is negative and therefore

non-physical. Furthermore, in the limit as x0 → ∞, we find that f̃(x0) → −1, which is

asymptotically incorrect and non-physical. Nonetheless if we substitute from Eq. (28) into

Eq. (24), we find that the resulting equation is satisfied. This is in keeping with the fact

that a weight function of unity should result in a conservative solution.

3.3 A Collocation Example

We next approximately solve Eq. (12) using the weighted-residual method in conjunction

with the linear trial space defined by Eq. (15). We choose x0/2 as the collocation point for

reasons explained later. Following Eq. (8), we obtain the equation for the constant a:

a + σ(1 + ax0/2) = 0 . (31)

Solving for a, we get

a = − 2σ

2 + σx0

. (32)
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Comparing Eq. (32) with Eq. (27), we find that the collocation solution is identical to the

weighted-residual solution. To see why this is so, one need simply perform the integral in

Eq. (26) using a one-point quadrature with the quadrature point equal to x0/2, and the

quadrature weight equal to ∆x = x0:

[a + σ(1 + ax0/2)] ∆x = 0 . (33)

Because the quadrature point is equal to x0/2, the quadrature integration is exact (the

midpoint rule applied to a linear integrand). Furthermore, if one divides Eq. (33) by ∆x,

one obtains Eq. (31). Thus in this case, collocation at x = x0/2 is equivalent to an exact

quadrature integration of the weighted residual equation, so the collocation method yields

the weighted-residual result. This is representative of a general approach often taken with

collocation. For instance, let us assume that we have collocated at quadrature points,

{xn}N
n=1 with associated weights {wn}N

n=1. Then the residual satisfies

R(xn) = 0 , n = 1, N. (34)

Given a set of weight functions, {Wi(x)}N
i=1, we multiply Eq. (34) by Wi(xn)wn, where i

successively takes on each value from 1 to N :

Wi(xn) R(xn) wn = 0 n = 1, N, i = 1, N. (35)
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Summing Eq. (35) over all n, we get

N∑
n=1

Wi(xn) R(xn) wn = 0 i = 1, N. (36)

If the quadrature formula is exact for the product of the residual and each weight function,

it is clear from Eq. (36) that the weighted residual equations will be satisfied, and therefore

that the collocation and weighted residual methods will be equivalent. If not, the collocation

method should be “similar” to the weighted residual method.
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